
O. LITZMAN 87 

The case of a crystal of finite thickness was dealt 
with by Litzman & R6zsa (1990). The dispersion 
equation (2.17) is the same but the formula for the 
intensity does not have the simple form (2.20). 

In the case of a crystal with s atoms in the basis 
the dispersion equation has a more complicated form 
(Litzman, 1986): 

det]ll-C-~({exp[i(O-~q-~O)]-l}-'Bpq 
pq 

+{exp[-i(Op+q-qJ)]-l}-'Dpq)] , (4.1) 

where I, C, Bpq and Dpq are matrices of order s. 
Neither the dispersion equation (4.1) nor the for- 
mulae for the intensities of the reflected and transmit- 
ted waves have been analyzed yet. 

The dispersion equation for the diffraction of light 
on a periodic system of dipoles has a form similar to 
(4.1) (Litzman, 1978, 1980). 

We think that a more profound study of the exact 
Ewald analytical formulae would be useful to test 
different approximations used in Bethe-Laue's con- 
ventional and extended dynamical theory, not only 
for neutrons but also for X-rays, as was shown 
for simple examples in Litzman & Dub (1990) and 
Litzman & R6zsa (1990). 
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Abstract 

A perturbation theory for many-beam high-energy 
transmission electron diffraction in noncentrosym- 
metric crystals is described for both the nondegener- 
ate and degenerate cases. This perturbation theory 
differs from the conventional quantum-mechanical 
perturbation theory by perturbing the electron 
wavevectors instead of the total electron energy, 
which is constant for elastically scattered electrons. 
The relations between the perturbation theory and 
some other approximations commonly used in elec- 
tron diffraction are discussed. It is shown that the 
few-beam approximation and the Kambe approxima- 
tion are both applications of degenerate perturbation 
theory. Finally, as an example, this degenerate per- 
turbation theory is applied to obtain an analytical 
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solution to a four-beam case with two systematic (0 
and g) and two nonsystematic (h and l) beams. This 
four-beam solution shows that the intensity of a four- 
beam interaction depends on all the four three-phase 
invariants involved, and also shows that the effects 
of the g beam on the three-beam interaction of 0, h 
and l are localized to the region near the Bragg 
condition of g. This may serve as a guide for future 
experiments using three-beam interactions for the 
measurement of structure-factor phases of an 
unknown structure. 

I. Introduction 

The formal theory of high-energy electron diffraction 
in a quantum-mechanical framework was established 

© 1991 International Union of Crystallography 
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by Bethe in 1928. It was subsequently developed for 
transmission high-energy electron diffraction by 
several authors (for a review, see Humphreys, 1979). 
However, our understanding of dynamical diffraction 
effects, such as the intensity variation in a convergent- 
beam electron diffraction (CBED) disc, usually 
requires a large amount of numerical simulation by 
some algorithm based on the formal theory* (for 
example, see Zuo, Gj0nnes & Spence, 1989), which 
does not give an intrinsic understanding which the 
explicit analytical solutions do. In past decades, 
various approximations have been developed and 
utilized to help us understand various effects of 
dynamical electron diffraction. These include the 
few-beam approximation, the Bethe second-order 
approximation, the Kambe approximation, the per- 
turbation treatment of absorption and Buxton's per- 
turbation treatment of high-order Laue-zone (HOLZ) 
effects. The few-beam approximation simplifies 
many-beam diffraction by only considering those 
beams which are strongly excited. The most com- 
monly used few-beam approximation is the two-beam 
approximation, which can be solved analytically. For 
cases involving three or more beams, a transparent 
analytical solution is only possible when symmetries 
are contained in the diffraction configuration 
(Fukuhara, 1966). In this case valuable information 
can be obtained from analytical solutions (Gj0nnes 
& H0ier, 1971). The Bethe second-order approxima- 
tion includes the effect of weak beams on the strong 
beams by introducing an effective potential. In the 
three-beam case it has been shown that the Bethe 
approximation is equivalent to the Kambe approxi- 
mation (Kambe, 1957; Zuo, H0ier & Spence, 1989). 
On the other hand, the Kambe strong coupling 
approximation is basically a degenerate perturbation 
treatment of three-beam electron diffraction as shown 
in this paper. The nondegenerate perturbation treat- 
ment of absorption by Hashimoto, Howie & Whelan 
(1962) and nondegenerate and degenerate perturba- 
tion treatment of HOLZ effects by Buxton (1976) 
follow the conventional quantum-mechanical 
approach in which a small potential perturbs the 
energy and wavefunction of the electron. This 
approach creates a conceptual difficulty since, in elas- 
tic diffraction, the electron has a constant total energy. 
It also leads to a specimen-thickness-dependent term 
due to the cross integration of two Bloch waves and 
the perturbation potential (this term cancels out in 
the two-beam case). A more suitable non-degenerate 
perturbation theory has been described by Wilkens, 
Katerbau & Ruhle (1973), Hussein & Wagenfeld 
(1978), Rez (1979) and Speer, Spence & Ihrig (1990). 
In these approaches, the Anpassung and eigenvectors 
are perturbed rather than the energy. In this paper, 

* Except the symmetry of the CBED pattern, see Buxton, Eades, 
Steeds & Rackham (1976). 

both nondegenerate and degenerate perturbation 
theory will be described for transmission electron 
diffraction. However, we will concentrate on the 
degenerate case, which has only been dealt with by 
Buxton (1976) in the conventional quantum- 
mechanical approach and is more useful in the many- 
beam diffraction cases. We will apply degenerate 
perturbation theory to a four-beam diffraction case 
to show the phase dependence of a four-beam interac- 
tion, and we will also use the four-beam results to 
study the validity of the three-beam approximation, 
which may be used in future experiments for the 
measurement of structure-factor phases of an 
unknown structure. 

The practical importance of studying these 
approximations can be seen in their direct application 
to the study of crystal structure. Many approxima- 
tions listed above have been used for the accurate 
measurement of structure-factor amplitudes and 
phases. For example, the critical voltage effect can 
be explained by the Bethe second approximation 
together with the two-beam approximation. The same 
combination can be used to explain systematic inter- 
actions (Gj0nnes, Gj0nnes, Zuo & Spence, 1988). 
Both the critical voltage effect and systematic interac- 
tions have been used to measure the structure factors 
of crystals accurately. [For examples of the applica- 
tion of the critical voltage effect, see Hewart & Hum- 
phreys (1974); for systematic interactions see Zuo, 
Spence & O'Keeffe (1988).] The same combination, 
when applied to noncentrosymmetric crystals, cor- 
rectly explains the phase dependence of the three- 
beam interaction (Marthinsen, Matsuhata, H0ier & 
Gj0nnes, 1988) which, with the Kambe approxima- 
tion, has been used to devise a method for accurate 
phase measurement using systematic and nonsystem- 
atic three-beam interactions in acentric crystals (Zuo, 
Spence & H0ier, 1989; Zuo, H0ier & Spence, 1989). 
Although these applications usually require a full 
many-beam dynamical simulation to obtain high 
accuracy, an approximation can greatly assist our 
basic understanding. Buxton's treatment of HOLZ 
effects provides the basic understanding of HOLZ 
patterns in the CBED pattern, which has been used 
to solve a crystal structure (Vincent, Bird & Steeds, 
1984). These approximations may also play a more 
important role in solving the 'inversion problem' in 
the future. This 'inversion problem' refers to the prob- 
lem of finding an unknown crystal structure from a 
set of electron diffraction patterns. The key to solving 
the 'inversion problem' is to find a set of simple 
parameters which can be directly related to structure 
factors and can be directly measured from a diffrac- 
tion pattern (Gj0nnes et al., 1988). Numerical simula- 
tion cannot be applied in this case, because this 
requires prior knowledge of the structure. One poss- 
ible inversion scheme occurs when the approximate 
crystal structure is known or the heavy-atom positions 
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in the structure are known. In that case, strong 
dynamical interactions can be simulated, while the 
weak interactions (which are more sensitive to a small 
departure from the approximate structure or the light 
atoms) can be treated by perturbation theory, so an 
analytical formula for intensity can be obtained, 
which in turn can be inverted to find the structure 
factors. A practical case is the low-temperature mono- 
clinic structure of magnetite (Fe304), which differs 
from the high-temperature cubic spinel structure by 
a very small atomic displacement and electron order- 
ing on the octahedral site (Iizumi et al., 1982 and 
references therein), which can be treated by perturba- 
tion (Zuo, Spence & Petuskey, 1990). 

2. The Bloch wave theory of transmission high-energy 
electron diffraction (THEED) 

The Bloch wave theory of dynamical electron diffrac- 
tion was originally formulated by Bethe (1928). In 
this theory, the total wavefield inside a crystal is 
expanded in a basis of Bloch waves 

tb(r) = • ci~O' 

= ~ ci exp (2rrik i . r)Z C~ exp (27rig. r). (1) 
i g 

Expanding the potential of the crystal in the Fourier 
series, we have 

U(r) = Z Ug exp (27rig. r). (2) 
g 

In this way, the Schr6dinger equation becomes 

[ K 2 - ( k + g ) 2 ]  C ~ + 2  U~hCh=O. (3) 
h 

Here K is the incident wavevector inside the crystal 
(k0 outside the crystal), K 2= k2+ Uo, and k is the 
Bloch wavevector we are looking for. In principle, 
dynamical electron diffraction in a crystal can be 
solved by finding solutions of (3) and matching boun- 
dary conditions to find the excitation of each Bloch 
wave, the c~. Diffraction by an arbitrary shape of 
crystal is too complicated to solve. The most common 
type of crystal shape we consider (as used in most 
experiments) is a parallel-sided thin slice. In this case, 
the tangential component of the incident wavevector 
is constant across the crystal surface. From the 
requirement of boundary condition, the tangential 
component of the wavevector is conserved inside and 
outside the crystal, so that 

k, = K, = k0,. (4) 

With this condition, in general we can write 

k = K+ 3'n. (5) 

Equations (3) and (5) can be solved by diagonalizing 
a 2N x 2N matrix to find the Anpassung 3' and the 

eigenvectors { Cg}, which gives n forward-propagating 
Bloch waves and n backward Bloch waves (Collela, 
1972). However, in the transmission case, the back- 
scattering can be neglected so, in this case, l Yl < K. 
Thus we have 

K 2 -  (k+ g)2 = K2-(K +g)2-2( g,, + g,,)y 

=2KSg-2(K,,+g,,)V. (6) 

Using the renormalization method (Lewis, Villagrana 
& Metherell, 1978), we define B, = (1 +g,,/K,,C,) 1/2, 
then (3) is simplified to 

[2KS,/ (1 + g./ K,,)]B, 

+ E  Ugh[(1 +g,,/K,,)'/2(1 + n,,/K,,)'/2]-'Bh 
h 

= 2KnyBg. (7) 

Equation (7) can be solved by diagonalizing an N x N 
matrix. The only approximation made in deriving this 
equation is to neglect the backscattering, so it includes 
the HOLZ effects and specimen inclination effects 
and applies to noncentrosymmetric crystals. This 
equation has been used for calculations of CBED 
intensity in general situations (Zuo, Gj0nnes & 
Spence, 1989). A similar formulation has also been 
used to study zone-axis HOLZ interactions (Jones, 
Rackham & Steeds, 1977). In the usual transmission 
case, the inclination of the crystal surfaces relative to 
the electron beam is small and we have K,, >> g,,. So, 
to a good approximation, g,,/K,, ~-O, then 

2KSgCg + • UghC h = 2Kn3"Cg. (8) 
h 

This equation gives n Anpassung yi and eigenvectors 
{Cg} ( i - - 1 , . . . , n ) .  HOLZ effects are included 
approximately in (8). The crystal inclination effect is 
taken into account by K, = K cos 0, where 0 is the 
angle between the surface normal and the incident 
beam. The excitation coefficient ci is found by match- 
ing the boundary conditions, which gives 

Z c,C~ = 1. 
i 

For analytical simplicity, we will neglect absorption 
effects in this paper. In this case, we have 

c, = C~*.  

The intensity of beam g is given by 

Ig= }-'. C~o*C~exp(2"rriyit) (9) 

Here t is the thickness of the crystal. 

3. Perturbation theory in transmission high-energy 
electron diffraction 

The idea of perturbation theory is to find the change 
in a known system, in this case a set of Bloch waves, 
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due to a small perturbation. The perturbation in elec- 
tron diffraction could be a small change in the interac- 
tion parameter Ug or in the excitation error. In both 
cases, (8) is the most suitable starting point for our 
discussion. Equation (8) can be written in a matrix 
form 

A C = A C .  

Here A , = 2 K S g  and A0= Ugh. Let A = A o + A ' ;  A '  is 
a small perturbation, resulting from a small change 
in Ug or in excitation error or both. Then, 

A o C  + A ' C  = AC. 

The eigenvalues and eigenvectors of Ao are z~ and 
{F~}, with i , j  = 1 , . . . ,  N. (The symbols r and F are 
used to avoid confusion with the h and C of matrix 
A.) We write the eigenvector matrix of A as a combi- 
nation of eigenvectors of Ao, C = Fe, where e is the 
coefficient matrix and F is the eigenvector matrix of 
Ao with F 0 = F~. Then we have 

{ F - I A o  F + F - ~ A ' F } e  = Be = he (10) 

with 

and 

Bi i  = "li "1- bii 

B o b o Y. rc, k IA'k,,,F,,,J=y. * ' = = FkiAk,,,F,,,j. (11) 
k m  k m  

3.1. Nondegenera te  perturbation 

The condition for no degeneracy is 

I'l,- ~l >> Ibmaxl. (12) 
Here [bmax[ is the largest element of b0, which can 
easily be shown to be of the same order as the largest 
element of the A' matrix. We are interested in effects 
of perturbation on the ith Bloch wave. We let 

A i = " l i d - A ,  

where zl is a small quantity of the same order as 
Ibmaxl. With (12), we can neglect A and b 0 except for 
j - -  i. For the j th equation of (10), this leads to 

( ~ - "l,) ej, + E bjkek, ~-- O. 
k 

which gives 

ej,~- bj,/ ( "l~ - zfl (13) 

with e,-~ 1, by normalization. Using this for the ith 
equation of (10), we find 

h,='l,+b,i+ElbolZ/('li-'lj). (14) 
J 

Equation (14) converges under condition (12). This 
shows the necessity for condition (12). Nondegener- 
ate perturbation theory is useful in treating the 
absorption of crystals, in which case the small 

imaginary potential is treated as a perturbation. This 
approach was first used by Hashimoto, Howie & 
Whelan (1962) by perturbing the energy in the two- 
beam approximation. Strictly speaking, this is incor- 
rect, since as stated in the Introduction the energy is 
constant for elastic electron scattering. However, in 
the two-beam case their results happen to agree with 
(14). In the general case with more than two beams, 
a perturbation of the energy leads to a thickness- 
dependent term which is not in (14) or (13) due to 
the integration of wavefunctions [see equation (9.17) 
in Hirsch, Howie, Nicholson, Pashley & Whelan, 
1977). Furthermore, it is found that it is also necessary 
to include a correction to the eigenfunction of (13) 
in treating lattice defects (Wilkens, Katerbau & 
Ruhle, 1973; Rez, 1979) and absorption in acentric 
crystals (Spence & Zuo, 1990; Bird, 1990). The other 
application of nondegenerate perturbation is to 
include the weak-beam effects (Hussein & Wagenfeld, 
1978; Eaglesham, 1989). 

3.2. Degenerate  perturbation 

In most electron diffraction cases, many beams are 
excited. In these cases, we usually face a degenerate 
perturbation problem. In contrast to the nondegener- 
ate case, we consider two Bloch waves to be degener- 
ate when condition (12) is not satisfied. If the 
degeneracy i s f  fold, then the first-order wave function 
is to be found from 

i_ +bii bij bik )(ii) bj, ~ j -  A + bjj ... bj~ ~' = 0, 
• . . , ,  • 

bki bkj "" Zk -- A + bkk k 

(15) 

where zi, z j , . . . ,  "lk are the Anpassungs  of the f-degen- 
erate Bloch waves• The general solution of (15) is 
impossible except when f - - 2 ,  that is only two Bloch 
waves are degenerate• In this case, 

( r i - h + b ,  b 0 ) (e~)  =0. (16) 
bj, " l j - h  + b ~  ~j 

This gives 

ai'J = ½ {'l, + b, + "l~ +bu 

+ [ ( ' l , + b i , - ' l j - b j ~ ) 2 + 4 l b o l 2 ]  '/z} (17) 

and 
e , = c o s  (/3/2) exp (kp). ej,=sin (/3/2) 

(18) 
e 0 = - s i n  (/3/2). ejj=cos (/3/2) exp (-i~p). 

Here ~o is the phase of b o and/3 is defined by 

c o t / 3 = ( r , + b , - r j - b j j ) / 2 1 b o l .  (19) 

In the following sections we will give some appli- 
cations of degenerate perturbation theory in 
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transmission high-energy electron diffraction to show 
its importance. 

4. Few-beam approximation and Kambe strong 
coupling approximation 

The few-beam approximation has been widely used 
in electron diffraction for qualitative explanations, 
especially the two-beam approximation. However, 
the formal justification of this approximation is rarely 
seen in the literature. A justification of the few-beam 
approximation can be given on the basis of degenerate 
perturbation theory. We take Ao to be a diagonal 
matrix with all the excitation errors on the diagonal 
and A' to be an off-diagonal matrix with interaction 
potential Ug, 

0 o / 
Ao = 2KSg 2KSh ' 

o (20) 

A'= 0 Ugh . 
Uh~ 0 

In this case the zero-order solution is just plane waves 
with ri=2KSg and F , = I ,  F~=0.  Ao+A' is the 
ordinary scattering matrix. So from the results of the 
last section, those beams with excitation error 2KSg 
of the order of Ug or smaller must be included, and 
those beams satisfying condition (12) can be neglec- 
ted in the zero-order approximation. 

The Kambe approximation refers to the approxi- 
mation used by Kambe (1957) in studying structure- 
factor phase effects in nonsystematic three-beam (0, g 
and h) interactions as shown in Fig. 1. The condition 
for the Kambe approximation is that [Ugh] >lull or 
[ Uh ]. The Kambe approximation has been generalized 
to the many-beam case (Zuo, 1989). However, for 

Ugh 
g h 

0 
Fig. 1. A nonsystematic three-beam interaction with beams 0, g 

and h. This three-beam interaction can be treated by perturbation 
theory when Iughl'>lu~l or lUll. 

simplicity we will look only at the three-beam case. 
In this case we take 

(i o o / Ao = 2KSg Ugh , 
Uhg 2 KSh / 

0 U_g 
A'= Ug 0 

uh o 

The eigenvalues and eigenvectors of Ao are 

"/'1 ~ 0 ,  

{sg + Sh +[(Sg--Sh)2+lugh/K 211/2}, 

(21) 

(22) 

(! 0 0 / 
F = cos (fl/2) exp (i~Ogh) -sin (/3/2) . (23) 

,sin (/3/2) cos (/3/2) exp (-i~Pgh),l 

Using these results and (11), we obtain a simplified 
equation 

b21 7" 2 6 2 ---- A 62 (24) 
\ b31 0 r3 / \ e3 e3 

with 

b12 = U_g cos (/3/2) exp (i~gh) 

+ U_ h sin (/3/2) 

b,2 = -U_g  sin (/3/2) 

+ U-h COS (/3/2) exp (--iq~gh). 

(25) 

This is the same as the result obtained by Kambe 
(Kambe, 1957; Zuo, H0ier & Spence, 1989). Equation 
(24) can be further simplified by considering the fact 
that, when r2-'-0, ~'3>> b12 or b13 (or r3=0,  ~'2>> 
]b,2 or b13 ) due to the assumption Ugh >>lUg or [Uh. 
The results of twofold-degenerate perturbation can 
then be applied. Detailed results have been given in 
the paper by Zuo, H0ier & Spence (1989). These 
results are equivalent to the Bethe approximation 
where the Bethe approximation can be applied. This 
suggests the nature of perturbation in the Bethe 
approximation. 

5. A four-beam solution without symmetry reduction 

The degenerate perturbation theory described in § 3 
can be readily applied to the four-beam case of Fig. 
2. Such four-beam interactions usually exist in CBED 
patterns if nonsystematic three-beam interactions are 
established. (For example, see Fig. 2.) The exact 
solutions for the four-beam interactions have been 
obtained for a special case in centrosymmetric crystals 
when there is a mirror symmetry between the 0 and 
g and h and l reflections (Marthinsen et al., 1988). 
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The results we present here are the approximate sol- 
utions for noncentrosymmetric crystals and for the 
general four-beam case. In studying four-beam 
interactions, we are mainly concerned about (i) the 
structure-factor phase dependence of four-beam 
interactions and (ii) the validity of the three-beam 
approximation. The second question has practical 
importance for attempts to solve unknown structures 
by directly measuring phases by electron diffraction. 
In that case, it is impossible to determine the phases 
by the three-beam refinement procedures used by 
Zuo, H0ier & Spence (1989), since this method 
requires simulations of many-beam interactions, for 
which precise atomic coordinates are required. It is 
therefore preferable to use the three-beam or other 
analytical solutions which possess few parameters. 
By studying four-beam interactions, the validity of 
the three-beam approximation can also be studied 
quantitatively. 

In the four-beam case of Fig. 2(a), we take 

A 0 

A,=  

(IV--" 0 Ug 2KS~ 0 O0 
0 2KSh Um ' 
0 Uih 2KS,/ 

0 0 U_ h I U-t 
0 0 U~h U~t . 

UhUh~O 00] 
u, u,~ o 

(26) 

Fig. 2. An approximate experimental four-beam interaction with 
beams 0, g, h and !. This picture was taken at 100 kV from a 
crushed Si thin sample in a Philips 400T electron microscope. 

In doing so, we assume 

Iu.I or I u , , I , . I u ,  I or IU, I or Iu. l or I u.,I. 
(27) 

This condition is a weak coupling condition. It divides 
the existing four reflections into two groups (0 and 
g) and (h and l) such that there is strong coupling 
within each group, but weak coupling between the 
two groups. The perturbation theory takes advantage 
of this weak coupling. This idea also works in the 
general many-beam case if the reflections can be 
divided into groups such that there is only weak 
coupling between reflections in different groups, but 
strong coupling between reflections in the same 
group. A practical example is provided by the nonsys- 
tematic case (Zuo, 1989) and HOLZ effects (Buxton, 
1976). 

The eigenvalues and eigenvectors of A0 can be 
obtained easily. We find 

• + 
(28) 

• . =  ½{s, + s , + [ ( s ,  - s,) + l u . / K .  2],/2} 
cos ½fl exp (-i~%) - s in  ½/3 

F = sin ½fl cos I13 exp (i~%) 
0 0 

0 0 

0 o ) 
0 0 

cos ½a exp (i~Ohl) - s in  ½a " 

sin ½or cos ½a exp (i~oth 

Here fl and a are defined by cot fl = - K S d l u ~ l  and 
cot a = K(Sh- $1)/I Ugl. Using the above results and 
(11), we obtain the following equation: 

/b31 b32 T3 E 3 E3 

\b41 b42 0 r4 ] e4 e,, 

Equation (29) is still too complicated to provide a 
general solution. It must be further simplified. To do 
that, let us look at the dispersion surface we expect 
from (29). The r~,2 and r3.4 give two sets of two-beam 
dispersion surfaces, which intersect with each other 
and give four intersection lines as shown in Fig. 3. 
This set of dispersion surfaces is called the asymptotic 
dispersion surface. Near each intersection, two Bloch 
waves are degenerate or almost degenerate. The 
introduction of the nonzero weak couplings [the b 
parameters in (29)] destroys the degeneracy and 
causes a hybridization of the dispersion surfaces, as 
predicted by (17). Fig. 4 shows a section of the four- 
beam dispersion surface taken on the plane 2: in Fig. 
3, without coupling and with coupling. The conditions 
of (27) are used to guarantee that the gaps (such as 
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d in the figure) of the hybridization of the dispersion 
surfaces due to the weak coupling are small compared 
to the existing gaps (such as D in the figure) in other 
dispersion surfaces, as shown schematically in Fig. 
4. In this case, away from the intersection, the disper- 
sion surfaces rapidly approach the asymptotic disper- 
sion surfaces. This is the basic assumption we have 
made in order to utilize perturbation theory in this 
case. In Fig. 5, the four intersection lines of the 
asymptotic surface in Fig. 3 are projected onto the 
CBED disc, together with the intersection lines of the 
zero plane with the g, h and l planes [the lines 
Kg(Sg = 0), g h ( S  h --0) and Kt(S~=O)] and the inter- 
section lines of the g plane with the h and l planes 
(lines gh and gl). The four intersection lines in the 
CBED disc approach the lines Kh, Ki, gh and gl as 
shown in Fig. 5. Generally, with a relatively thick 
crystal we expect that along, each intersection line 
there is a localized intensity maximum in the CBED 
disc (Zuo, 1989). In the following, we specifically 
look into parts 3 and 4 in the CBED disc of reflection 
1 (see Fig. 5). Others can be similarly studied. 

Part 4 is governed by intersection of 7-~ and T4. By 
neglecting the other two non-degenerate zero-order 
Bloch waves, we obtain 

 +b,1 b14 0 
b41 'r 4 -- h + b44 e4 

(30) 

,"" """! 

Fig. 3. An illustration of asymptotic four-beam dispersion surfaces 
given by two two-beam dispersion surfaces intersecting each 
other. 

d - ~ - t  

Fig. 4. A section of four-beam dispersion surfaces taken from 
plane 2; in Fig. 3. The dashed lines are the asymptotic dispersion. 
The full lines are the dispersion with the perturbation potential. 
The condition d ,~ D ensures that perturbation applies. 

The solution of this type of equation is given by (17) 
and (18). With these solutions and (9), (11), (30) and 
C = Fe we obtain an expression for the intensity in 
CBED due to z~ and z4 interaction as follows: 

I 4 = COS 2 (/3 / 2) COS 2 ( 01~ / 2){Ib,41=/[lb141 = + ( KS4)2]} 
x sin 2 (Tr t /g . ) [ I  b,41 = + (KS4)2] 1/2 

S4= SgJI-(S2JI - Ug /K  2)I/2--Sh--S , 

+[(Sh-S,)2+lUh,/KI2]'/a+b,,-b44 (31) 

Ib,~l= = I u, I = cos2 (a /2 )cos  = (/3/2) 

x [ {1 - - ( IUh /U l [ )  tan (re/2) 

x exp [ i(¢ht + ¢1-  eh)]} 

-- ([ Ugh/ Ul[) tan (/3/2) tan (a /2 )  

x exp [ i('Pgh -- eg + ehl + et)] 

+([Ugt/Ul]) tan (/3/2) 

x exp [i(~Ogt- ~Og + r,o,)]l 2 

b~l = b44 = 0. 

Similarly, for part 3 (Fig. 5) 

/3 = sin 2 (/3 / 2) cos 2 (a / 2){ I b24[ 2/[[b24] 2 + (KS3)2]} 

x sin = (~r t /g . ) [ ]  b=41 = + (KS3)=] '/= 

S3= S~-(S~ + U~/ KI2)'/2- & -  S, 

+ [(Sh -- St) = +lUh,/KI=] '/2 (32) 

162412 = I u ,  I = cos = sin = ( /3 /2 )1{  1 - Iuh /u , I  
x tan  (~ /2 )  exp [ i (~m+ C t -  qoa)]} 

- I  Ugh/UII cot (/3/2) tan (¢z/2) 

x exp [i(~%h -- ~Og + (~Oh,-~" (.~,)] 

-I u ,l/I u,I cot (/3/2) 
x exp [ i (~gt-  ~'g + ~',) ]12. 

,~ ~ K I 

c'- c 

B B' 
~ gl 

gh 

Kg 

Fig. 5. The four intersection lines of asymptotic dispersion surfaces 
projected onto a CBED disc (see Fig. 3). Superimposed are the 
general intensity features that we expect from a four-beam inter- 
action. The lines Kg, K h and Kt are the Kikuchi lines of reflec- 
tions g, h and/ .  For details, see text. 



94 H I G H - E N E R G Y  TRANSMISSION ELECTRON DIFFRACTION 

Of the quantities involved in both intensity 
expressions (31) and (32), only the effective potentials 
hi4 2 and Ib24 2 depend on the phases. The four-phase 

invariant in (31) can be broken into two three-phase 
invariants, 

So we conclude that the intensity in four-beam inter- 
actions depends on all four possible three-phase 
invariants. This is in contradiction with the conclusion 
of the second Bethe approximation, which gives a 
phase dependence 

Iur"VIu, == 1--(IUh IUh, /2g,  Sh U, ) 

x exp [ i(¢h -- ~Pt + ~)hl)] 

- [  Ug lUg,/2K,,Sg U, ] 

x exp [i(¢g-~Pt + ~og,)] 2. 

This only depends on the two three-phase invariants 
involving ¢Pl. The second Bethe approximation 
assumes that only two beams, 0 and I, are strongly 
excited and that both g and h are weak. In our 
approximation, all four beams can be strongly 
excited. It therefore describes the four-beam interac- 
tion more accurately than the Bethe approximation. 

In the effective potential of [b14 2 and b24 2 of (31) 
and (32), the terms within { } result from the three- 
beam (0, h and l) interactions (Zuo, Hc~ier & Spence, 
1989). The other terms within I I are due to the 
inclusion of a fourth beam g. The effects of the fourth 
beam are weighted by the factor tan (/3/2) and 
cot (/3/2) in b14 2 and b24 2, respectively. From the 
definition of cot/3 = - K S g /  Ug = - to ,  we have 

tan ( /3 /2)= 1/cot ( /3/2)=(1+to2)l /E+to.  (33) 

The functions tan (/3/2) and cot (/3/2) are plotted in 
Fig. 6. tan (/3/2) decreases to zero when Sg becomes 
more negative and cot (/3/2) decreases to zero when 
Sg becomes more positive. From line Kg to D'  in Fig. 
5, Sg is increasingly negative, and tan (/3/2) in Ib,412 

1 200+0  - 

100e+O 

8 .00o - I  

6 . 000 -1  

400o - ' 1  

2 000 -1  

0 • i , • = • , • , 

- 6  - 4  - 2  0 2 4 6 
(,,0 

Fig. 6. tan (/3/2) and cot (/3/2) as functions of to. 

decreases to zero quickly and so does the effect of 
the fourth beam g. From line Kg to C', Sg is positive 
and increases, cot (/3/2) in Ib2412 decreases to zero. 
So we may conclude that the disturbance due to the 
fourth beam g on the three-beam interaction 0, h and 
I is very localized to the region very close to the Bragg 
condition for g, the line Kg in Fig. 5. Away from that 
region, the intensity can be well described by the 
three-beam approximation. The size of the localized 
region depends on the sizes of g and Ug. The rule of 
thumb is that this region is about the same size as 
the bright area in the g disc. 
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Abstract 

The physical nature of the sharpness and weakness 
of surface superlattice spots in reflection high-energy 
electron diffraction (RHEED) and the validity of 
the kinematical approximation for analyzing the 
intensities of the superlattice spots are examined, 
using a Bloch-wave formulation of the dynamical 
theory of RHEED. It is found that although it is 
adequate to treat surface superlattice diffraction 
kinematically within the selvedge, a kinematical 
analysis of RHEED intensities of superlattice spots 
is not in general valid, unless some criteria are 
satisfied. These include a projection approximation 
for the superlattice in the selvedge, a glancing 
incidence such that no diffracted beams other than 
the incident and specularly reflected beams are 
excited in both the selvedge and the underlying bulk 
crystal. 

1. Introduction 

In recent years there has been a trend in the structure 
determination of reconstructed surfaces to use high- 
energy electron diffraction techniques, and to employ 
a kinematical approximation in analyzing the 
intensities of surface superlattice reflections (Takaya- 
nagi, Tanishiro, Takahashi & Takahashi, 1985a, b; 
Ino, 1977; Wu & Schowalter, 1988; Horio & Ichimiya, 
1989). Theoretically this trend results from the 
intractability of carrying out dynamical calculations 
for large numbers of possible surface models and 
experimentally it is motivated by the great success of 
the determination of the dimer adatom stacking-fault 
(DAS) structure of the S i ( l l l )  7 x 7  reconstructed 
surface using a simple kinematical analysis (Takaya- 
nagi et al., 1985a, b). 

While in the case of transmission electron diffrac- 
tion (TED) the validity of the kinematical approxima- 
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tion has been examined using multislice calculations 
(Spence, 1983; Tanishiro & Takayanagi, 1989) for Si 
and certain incident-beam directions and analyzed 
using Bloch-wave theory (Peng & Whelan, 1991), far 
less has been done in the reflection high-energy elec- 
tron diffraction (RHEED) case. Although it has long 
been realized that in RHEED electrons interact 
strongly with the atoms and dynamical calculations 
are needed, the extreme sharpness and weakness of 
the surface superlattice spots in RHEED patterns 
have been taken to suggest the validity of a kinemati- 
cal description, i.e. the diffraction processes under- 
gone by electrons associated with superlattice reflec- 
tions are dominated by single-scattering processes. 
The intensities of superlattice spots in RHEED have 
therefore been analyzed kinematically (Ino, 1977; Wu 
& Schowalter, 1988; Horio & Ichimiya, 1989). It is 
the purpose of this paper to examine the various 
diffraction processes involved in both the selvedge 
and the underlying bulk crystal, within the framework 
of Bloch-wave dynamical theory, and to set criteria 
for the validity for the kinematical approximation 
in analyzing RHEED intensities of superlattice 
reflections. 

2. General description 

We shall consider a beam of high-energy electrons 
(10 keV or more, say) which is incident upon a flat 
surface at grazing incidence. Here the surface is 
thought of as consisting of a selvedge, over which 
there is a reconstruction, and the underlying bulk 
crystal. There are three distinct regions which need 
to be treated separately. For the vacuum region above 
the surface, there exist the incident electron beam 
and several reflected beams, and the total wavefunc- 
tion may be written as 

~o(r) = exp ( ix .r)  + ~ Rm exp ( iKm .r), (1) 
m 
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